extension | φ:Q→Out N | d | ρ | Label | ID |
(C23xD5).1C22 = C10.54(C4xD4) | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).1C2^2 | 320,296 |
(C23xD5).2C22 = C10.55(C4xD4) | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).2C2^2 | 320,297 |
(C23xD5).3C22 = (C2xC20):5D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).3C2^2 | 320,298 |
(C23xD5).4C22 = (C2xDic5):3D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).4C2^2 | 320,299 |
(C23xD5).5C22 = (C2xC4).20D20 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).5C2^2 | 320,300 |
(C23xD5).6C22 = (C2xC4).21D20 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).6C2^2 | 320,301 |
(C23xD5).7C22 = C10.(C4:D4) | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).7C2^2 | 320,302 |
(C23xD5).8C22 = (C22xD5).Q8 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).8C2^2 | 320,303 |
(C23xD5).9C22 = (C2xC20).33D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).9C2^2 | 320,304 |
(C23xD5).10C22 = D5xC23:C4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 40 | 8+ | (C2^3xD5).10C2^2 | 320,370 |
(C23xD5).11C22 = (C2xC4):6D20 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).11C2^2 | 320,566 |
(C23xD5).12C22 = (C2xC42):D5 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).12C2^2 | 320,567 |
(C23xD5).13C22 = C24.13D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).13C2^2 | 320,584 |
(C23xD5).14C22 = C23.45D20 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).14C2^2 | 320,585 |
(C23xD5).15C22 = C24.14D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).15C2^2 | 320,586 |
(C23xD5).16C22 = C23:2D20 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).16C2^2 | 320,587 |
(C23xD5).17C22 = C24.16D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).17C2^2 | 320,588 |
(C23xD5).18C22 = (C2xD20):22C4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).18C2^2 | 320,615 |
(C23xD5).19C22 = C10.90(C4xD4) | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).19C2^2 | 320,617 |
(C23xD5).20C22 = (C2xC4):3D20 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).20C2^2 | 320,618 |
(C23xD5).21C22 = (C2xC20).289D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).21C2^2 | 320,619 |
(C23xD5).22C22 = (C2xC20).290D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).22C2^2 | 320,620 |
(C23xD5).23C22 = (C2xC20).56D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).23C2^2 | 320,621 |
(C23xD5).24C22 = C24.65D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).24C2^2 | 320,840 |
(C23xD5).25C22 = C24.21D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).25C2^2 | 320,850 |
(C23xD5).26C22 = (C22xD5):Q8 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).26C2^2 | 320,858 |
(C23xD5).27C22 = C2xC20:4D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).27C2^2 | 320,1147 |
(C23xD5).28C22 = C2xC4.D20 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).28C2^2 | 320,1148 |
(C23xD5).29C22 = C2xC42:2D5 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).29C2^2 | 320,1150 |
(C23xD5).30C22 = C24.24D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).30C2^2 | 320,1158 |
(C23xD5).31C22 = C24.27D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).31C2^2 | 320,1162 |
(C23xD5).32C22 = C2xDic5.5D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).32C2^2 | 320,1163 |
(C23xD5).33C22 = C2xC22.D20 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).33C2^2 | 320,1164 |
(C23xD5).34C22 = C2xC4:C4:D5 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).34C2^2 | 320,1184 |
(C23xD5).35C22 = C42:7D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).35C2^2 | 320,1193 |
(C23xD5).36C22 = C42:9D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).36C2^2 | 320,1197 |
(C23xD5).37C22 = C42:10D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).37C2^2 | 320,1199 |
(C23xD5).38C22 = C42:11D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).38C2^2 | 320,1217 |
(C23xD5).39C22 = D20:23D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).39C2^2 | 320,1222 |
(C23xD5).40C22 = D4:5D20 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).40C2^2 | 320,1226 |
(C23xD5).41C22 = C42:16D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).41C2^2 | 320,1228 |
(C23xD5).42C22 = C42:17D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).42C2^2 | 320,1232 |
(C23xD5).43C22 = C24.33D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).43C2^2 | 320,1263 |
(C23xD5).44C22 = C24.34D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).44C2^2 | 320,1264 |
(C23xD5).45C22 = D5xC4:D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).45C2^2 | 320,1276 |
(C23xD5).46C22 = C10.382+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).46C2^2 | 320,1279 |
(C23xD5).47C22 = C10.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).47C2^2 | 320,1282 |
(C23xD5).48C22 = D20:20D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).48C2^2 | 320,1284 |
(C23xD5).49C22 = C10.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).49C2^2 | 320,1285 |
(C23xD5).50C22 = C10.462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).50C2^2 | 320,1289 |
(C23xD5).51C22 = C10.482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).51C2^2 | 320,1292 |
(C23xD5).52C22 = D20:21D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).52C2^2 | 320,1302 |
(C23xD5).53C22 = C10.512+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).53C2^2 | 320,1306 |
(C23xD5).54C22 = C10.532+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).54C2^2 | 320,1309 |
(C23xD5).55C22 = C10.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).55C2^2 | 320,1316 |
(C23xD5).56C22 = D5xC22.D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).56C2^2 | 320,1324 |
(C23xD5).57C22 = C10.1212+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).57C2^2 | 320,1326 |
(C23xD5).58C22 = C10.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).58C2^2 | 320,1329 |
(C23xD5).59C22 = C10.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).59C2^2 | 320,1330 |
(C23xD5).60C22 = C10.622+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).60C2^2 | 320,1331 |
(C23xD5).61C22 = C10.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).61C2^2 | 320,1338 |
(C23xD5).62C22 = D5xC4.4D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).62C2^2 | 320,1345 |
(C23xD5).63C22 = C42:18D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).63C2^2 | 320,1346 |
(C23xD5).64C22 = D20:10D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).64C2^2 | 320,1348 |
(C23xD5).65C22 = C42:20D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).65C2^2 | 320,1350 |
(C23xD5).66C22 = C42:21D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).66C2^2 | 320,1351 |
(C23xD5).67C22 = D5xC42:2C2 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).67C2^2 | 320,1375 |
(C23xD5).68C22 = C42:23D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).68C2^2 | 320,1376 |
(C23xD5).69C22 = C42:24D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).69C2^2 | 320,1377 |
(C23xD5).70C22 = C42:25D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).70C2^2 | 320,1383 |
(C23xD5).71C22 = D5xC4:1D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).71C2^2 | 320,1386 |
(C23xD5).72C22 = C42:26D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).72C2^2 | 320,1387 |
(C23xD5).73C22 = C42:28D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).73C2^2 | 320,1392 |
(C23xD5).74C22 = C2xC23.23D10 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).74C2^2 | 320,1461 |
(C23xD5).75C22 = C2xC20:7D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).75C2^2 | 320,1462 |
(C23xD5).76C22 = C2xDic5:D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).76C2^2 | 320,1474 |
(C23xD5).77C22 = C2xC20:D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).77C2^2 | 320,1475 |
(C23xD5).78C22 = C2xC20.23D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 160 | | (C2^3xD5).78C2^2 | 320,1486 |
(C23xD5).79C22 = C10.1452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).79C2^2 | 320,1501 |
(C23xD5).80C22 = C10.1462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).80C2^2 | 320,1502 |
(C23xD5).81C22 = (C22xF5):C4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 40 | 8+ | (C2^3xD5).81C2^2 | 320,204 |
(C23xD5).82C22 = C22:F5:C4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).82C2^2 | 320,255 |
(C23xD5).83C22 = C22:C4xF5 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 40 | | (C2^3xD5).83C2^2 | 320,1036 |
(C23xD5).84C22 = D10:(C4:C4) | φ: C22/C1 → C22 ⊆ Out C23xD5 | 40 | | (C2^3xD5).84C2^2 | 320,1037 |
(C23xD5).85C22 = C10.(C4xD4) | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).85C2^2 | 320,1038 |
(C23xD5).86C22 = C2xD10.D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).86C2^2 | 320,1082 |
(C23xD5).87C22 = (C2xD4):7F5 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 40 | 8+ | (C2^3xD5).87C2^2 | 320,1108 |
(C23xD5).88C22 = (C2xF5):D4 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 40 | | (C2^3xD5).88C2^2 | 320,1117 |
(C23xD5).89C22 = C2.(D4xF5) | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).89C2^2 | 320,1118 |
(C23xD5).90C22 = C2xC23:F5 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 80 | | (C2^3xD5).90C2^2 | 320,1134 |
(C23xD5).91C22 = C2xD4xF5 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 40 | | (C2^3xD5).91C2^2 | 320,1595 |
(C23xD5).92C22 = D10.C24 | φ: C22/C1 → C22 ⊆ Out C23xD5 | 40 | 8+ | (C2^3xD5).92C2^2 | 320,1596 |
(C23xD5).93C22 = C22.58(D4xD5) | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).93C2^2 | 320,291 |
(C23xD5).94C22 = (C2xC4):9D20 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).94C2^2 | 320,292 |
(C23xD5).95C22 = D10:2C42 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).95C2^2 | 320,293 |
(C23xD5).96C22 = D10:2(C4:C4) | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).96C2^2 | 320,294 |
(C23xD5).97C22 = D10:3(C4:C4) | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).97C2^2 | 320,295 |
(C23xD5).98C22 = C4xD10:C4 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).98C2^2 | 320,565 |
(C23xD5).99C22 = C24.48D10 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).99C2^2 | 320,582 |
(C23xD5).100C22 = C24.12D10 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).100C2^2 | 320,583 |
(C23xD5).101C22 = D10:4(C4:C4) | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).101C2^2 | 320,614 |
(C23xD5).102C22 = D10:5(C4:C4) | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).102C2^2 | 320,616 |
(C23xD5).103C22 = C2xC42:D5 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).103C2^2 | 320,1144 |
(C23xD5).104C22 = C2xC4xD20 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).104C2^2 | 320,1145 |
(C23xD5).105C22 = C2xD5xC22:C4 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).105C2^2 | 320,1156 |
(C23xD5).106C22 = C2xDic5:4D4 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).106C2^2 | 320,1157 |
(C23xD5).107C22 = C2xD10.12D4 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).107C2^2 | 320,1160 |
(C23xD5).108C22 = C2xD10:D4 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).108C2^2 | 320,1161 |
(C23xD5).109C22 = C2xC4:C4:7D5 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).109C2^2 | 320,1174 |
(C23xD5).110C22 = C2xD20:8C4 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).110C2^2 | 320,1175 |
(C23xD5).111C22 = C2xD10.13D4 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).111C2^2 | 320,1177 |
(C23xD5).112C22 = C2xC4:D20 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).112C2^2 | 320,1178 |
(C23xD5).113C22 = C2xD10:Q8 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).113C2^2 | 320,1180 |
(C23xD5).114C22 = C2xD10:2Q8 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).114C2^2 | 320,1181 |
(C23xD5).115C22 = D5xC42:C2 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).115C2^2 | 320,1192 |
(C23xD5).116C22 = C42:8D10 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).116C2^2 | 320,1196 |
(C23xD5).117C22 = C4xD4xD5 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).117C2^2 | 320,1216 |
(C23xD5).118C22 = C42:12D10 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).118C2^2 | 320,1219 |
(C23xD5).119C22 = C4:C4:21D10 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).119C2^2 | 320,1278 |
(C23xD5).120C22 = D5xC22:Q8 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).120C2^2 | 320,1298 |
(C23xD5).121C22 = C4:C4:26D10 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).121C2^2 | 320,1299 |
(C23xD5).122C22 = C4:C4:28D10 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).122C2^2 | 320,1328 |
(C23xD5).123C22 = C22xD10:C4 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).123C2^2 | 320,1459 |
(C23xD5).124C22 = C2xC4xC5:D4 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).124C2^2 | 320,1460 |
(C23xD5).125C22 = C2xC20:2D4 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).125C2^2 | 320,1472 |
(C23xD5).126C22 = C2xD10:3Q8 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).126C2^2 | 320,1485 |
(C23xD5).127C22 = (C2xC20):15D4 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).127C2^2 | 320,1500 |
(C23xD5).128C22 = C22xC4oD20 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).128C2^2 | 320,1611 |
(C23xD5).129C22 = C22xD4:2D5 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).129C2^2 | 320,1613 |
(C23xD5).130C22 = C22xQ8:2D5 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 160 | | (C2^3xD5).130C2^2 | 320,1616 |
(C23xD5).131C22 = C2xD5xC4oD4 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).131C2^2 | 320,1618 |
(C23xD5).132C22 = C2xD10.3Q8 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).132C2^2 | 320,1100 |
(C23xD5).133C22 = C4xC22:F5 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).133C2^2 | 320,1101 |
(C23xD5).134C22 = (C22xC4):7F5 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).134C2^2 | 320,1102 |
(C23xD5).135C22 = D10:6(C4:C4) | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).135C2^2 | 320,1103 |
(C23xD5).136C22 = C24:4F5 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 40 | | (C2^3xD5).136C2^2 | 320,1138 |
(C23xD5).137C22 = C22xC4xF5 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).137C2^2 | 320,1590 |
(C23xD5).138C22 = C22xC4:F5 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).138C2^2 | 320,1591 |
(C23xD5).139C22 = C2xD10.C23 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).139C2^2 | 320,1592 |
(C23xD5).140C22 = C22xC22:F5 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).140C2^2 | 320,1607 |
(C23xD5).141C22 = C24xF5 | φ: C22/C2 → C2 ⊆ Out C23xD5 | 80 | | (C2^3xD5).141C2^2 | 320,1638 |
(C23xD5).142C22 = D5xC2.C42 | φ: trivial image | 160 | | (C2^3xD5).142C2^2 | 320,290 |
(C23xD5).143C22 = D5xC2xC42 | φ: trivial image | 160 | | (C2^3xD5).143C2^2 | 320,1143 |
(C23xD5).144C22 = C2xD5xC4:C4 | φ: trivial image | 160 | | (C2^3xD5).144C2^2 | 320,1173 |
(C23xD5).145C22 = D5xC23xC4 | φ: trivial image | 160 | | (C2^3xD5).145C2^2 | 320,1609 |
(C23xD5).146C22 = C22xQ8xD5 | φ: trivial image | 160 | | (C2^3xD5).146C2^2 | 320,1615 |