extension | φ:Q→Out N | d | ρ | Label | ID |
(C23×D5).1C22 = C10.54(C4×D4) | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).1C2^2 | 320,296 |
(C23×D5).2C22 = C10.55(C4×D4) | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).2C2^2 | 320,297 |
(C23×D5).3C22 = (C2×C20)⋊5D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).3C2^2 | 320,298 |
(C23×D5).4C22 = (C2×Dic5)⋊3D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).4C2^2 | 320,299 |
(C23×D5).5C22 = (C2×C4).20D20 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).5C2^2 | 320,300 |
(C23×D5).6C22 = (C2×C4).21D20 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).6C2^2 | 320,301 |
(C23×D5).7C22 = C10.(C4⋊D4) | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).7C2^2 | 320,302 |
(C23×D5).8C22 = (C22×D5).Q8 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).8C2^2 | 320,303 |
(C23×D5).9C22 = (C2×C20).33D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).9C2^2 | 320,304 |
(C23×D5).10C22 = D5×C23⋊C4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 40 | 8+ | (C2^3xD5).10C2^2 | 320,370 |
(C23×D5).11C22 = (C2×C4)⋊6D20 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).11C2^2 | 320,566 |
(C23×D5).12C22 = (C2×C42)⋊D5 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).12C2^2 | 320,567 |
(C23×D5).13C22 = C24.13D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).13C2^2 | 320,584 |
(C23×D5).14C22 = C23.45D20 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).14C2^2 | 320,585 |
(C23×D5).15C22 = C24.14D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).15C2^2 | 320,586 |
(C23×D5).16C22 = C23⋊2D20 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).16C2^2 | 320,587 |
(C23×D5).17C22 = C24.16D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).17C2^2 | 320,588 |
(C23×D5).18C22 = (C2×D20)⋊22C4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).18C2^2 | 320,615 |
(C23×D5).19C22 = C10.90(C4×D4) | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).19C2^2 | 320,617 |
(C23×D5).20C22 = (C2×C4)⋊3D20 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).20C2^2 | 320,618 |
(C23×D5).21C22 = (C2×C20).289D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).21C2^2 | 320,619 |
(C23×D5).22C22 = (C2×C20).290D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).22C2^2 | 320,620 |
(C23×D5).23C22 = (C2×C20).56D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).23C2^2 | 320,621 |
(C23×D5).24C22 = C24.65D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).24C2^2 | 320,840 |
(C23×D5).25C22 = C24.21D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).25C2^2 | 320,850 |
(C23×D5).26C22 = (C22×D5)⋊Q8 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).26C2^2 | 320,858 |
(C23×D5).27C22 = C2×C20⋊4D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).27C2^2 | 320,1147 |
(C23×D5).28C22 = C2×C4.D20 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).28C2^2 | 320,1148 |
(C23×D5).29C22 = C2×C42⋊2D5 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).29C2^2 | 320,1150 |
(C23×D5).30C22 = C24.24D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).30C2^2 | 320,1158 |
(C23×D5).31C22 = C24.27D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).31C2^2 | 320,1162 |
(C23×D5).32C22 = C2×Dic5.5D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).32C2^2 | 320,1163 |
(C23×D5).33C22 = C2×C22.D20 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).33C2^2 | 320,1164 |
(C23×D5).34C22 = C2×C4⋊C4⋊D5 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).34C2^2 | 320,1184 |
(C23×D5).35C22 = C42⋊7D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).35C2^2 | 320,1193 |
(C23×D5).36C22 = C42⋊9D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).36C2^2 | 320,1197 |
(C23×D5).37C22 = C42⋊10D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).37C2^2 | 320,1199 |
(C23×D5).38C22 = C42⋊11D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).38C2^2 | 320,1217 |
(C23×D5).39C22 = D20⋊23D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).39C2^2 | 320,1222 |
(C23×D5).40C22 = D4⋊5D20 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).40C2^2 | 320,1226 |
(C23×D5).41C22 = C42⋊16D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).41C2^2 | 320,1228 |
(C23×D5).42C22 = C42⋊17D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).42C2^2 | 320,1232 |
(C23×D5).43C22 = C24.33D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).43C2^2 | 320,1263 |
(C23×D5).44C22 = C24.34D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).44C2^2 | 320,1264 |
(C23×D5).45C22 = D5×C4⋊D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).45C2^2 | 320,1276 |
(C23×D5).46C22 = C10.382+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).46C2^2 | 320,1279 |
(C23×D5).47C22 = C10.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).47C2^2 | 320,1282 |
(C23×D5).48C22 = D20⋊20D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).48C2^2 | 320,1284 |
(C23×D5).49C22 = C10.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).49C2^2 | 320,1285 |
(C23×D5).50C22 = C10.462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).50C2^2 | 320,1289 |
(C23×D5).51C22 = C10.482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).51C2^2 | 320,1292 |
(C23×D5).52C22 = D20⋊21D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).52C2^2 | 320,1302 |
(C23×D5).53C22 = C10.512+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).53C2^2 | 320,1306 |
(C23×D5).54C22 = C10.532+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).54C2^2 | 320,1309 |
(C23×D5).55C22 = C10.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).55C2^2 | 320,1316 |
(C23×D5).56C22 = D5×C22.D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).56C2^2 | 320,1324 |
(C23×D5).57C22 = C10.1212+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).57C2^2 | 320,1326 |
(C23×D5).58C22 = C10.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).58C2^2 | 320,1329 |
(C23×D5).59C22 = C10.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).59C2^2 | 320,1330 |
(C23×D5).60C22 = C10.622+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).60C2^2 | 320,1331 |
(C23×D5).61C22 = C10.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).61C2^2 | 320,1338 |
(C23×D5).62C22 = D5×C4.4D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).62C2^2 | 320,1345 |
(C23×D5).63C22 = C42⋊18D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).63C2^2 | 320,1346 |
(C23×D5).64C22 = D20⋊10D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).64C2^2 | 320,1348 |
(C23×D5).65C22 = C42⋊20D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).65C2^2 | 320,1350 |
(C23×D5).66C22 = C42⋊21D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).66C2^2 | 320,1351 |
(C23×D5).67C22 = D5×C42⋊2C2 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).67C2^2 | 320,1375 |
(C23×D5).68C22 = C42⋊23D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).68C2^2 | 320,1376 |
(C23×D5).69C22 = C42⋊24D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).69C2^2 | 320,1377 |
(C23×D5).70C22 = C42⋊25D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).70C2^2 | 320,1383 |
(C23×D5).71C22 = D5×C4⋊1D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).71C2^2 | 320,1386 |
(C23×D5).72C22 = C42⋊26D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).72C2^2 | 320,1387 |
(C23×D5).73C22 = C42⋊28D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).73C2^2 | 320,1392 |
(C23×D5).74C22 = C2×C23.23D10 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).74C2^2 | 320,1461 |
(C23×D5).75C22 = C2×C20⋊7D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).75C2^2 | 320,1462 |
(C23×D5).76C22 = C2×Dic5⋊D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).76C2^2 | 320,1474 |
(C23×D5).77C22 = C2×C20⋊D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).77C2^2 | 320,1475 |
(C23×D5).78C22 = C2×C20.23D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 160 | | (C2^3xD5).78C2^2 | 320,1486 |
(C23×D5).79C22 = C10.1452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).79C2^2 | 320,1501 |
(C23×D5).80C22 = C10.1462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).80C2^2 | 320,1502 |
(C23×D5).81C22 = (C22×F5)⋊C4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 40 | 8+ | (C2^3xD5).81C2^2 | 320,204 |
(C23×D5).82C22 = C22⋊F5⋊C4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).82C2^2 | 320,255 |
(C23×D5).83C22 = C22⋊C4×F5 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 40 | | (C2^3xD5).83C2^2 | 320,1036 |
(C23×D5).84C22 = D10⋊(C4⋊C4) | φ: C22/C1 → C22 ⊆ Out C23×D5 | 40 | | (C2^3xD5).84C2^2 | 320,1037 |
(C23×D5).85C22 = C10.(C4×D4) | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).85C2^2 | 320,1038 |
(C23×D5).86C22 = C2×D10.D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).86C2^2 | 320,1082 |
(C23×D5).87C22 = (C2×D4)⋊7F5 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 40 | 8+ | (C2^3xD5).87C2^2 | 320,1108 |
(C23×D5).88C22 = (C2×F5)⋊D4 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 40 | | (C2^3xD5).88C2^2 | 320,1117 |
(C23×D5).89C22 = C2.(D4×F5) | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).89C2^2 | 320,1118 |
(C23×D5).90C22 = C2×C23⋊F5 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 80 | | (C2^3xD5).90C2^2 | 320,1134 |
(C23×D5).91C22 = C2×D4×F5 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 40 | | (C2^3xD5).91C2^2 | 320,1595 |
(C23×D5).92C22 = D10.C24 | φ: C22/C1 → C22 ⊆ Out C23×D5 | 40 | 8+ | (C2^3xD5).92C2^2 | 320,1596 |
(C23×D5).93C22 = C22.58(D4×D5) | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).93C2^2 | 320,291 |
(C23×D5).94C22 = (C2×C4)⋊9D20 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).94C2^2 | 320,292 |
(C23×D5).95C22 = D10⋊2C42 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).95C2^2 | 320,293 |
(C23×D5).96C22 = D10⋊2(C4⋊C4) | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).96C2^2 | 320,294 |
(C23×D5).97C22 = D10⋊3(C4⋊C4) | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).97C2^2 | 320,295 |
(C23×D5).98C22 = C4×D10⋊C4 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).98C2^2 | 320,565 |
(C23×D5).99C22 = C24.48D10 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).99C2^2 | 320,582 |
(C23×D5).100C22 = C24.12D10 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).100C2^2 | 320,583 |
(C23×D5).101C22 = D10⋊4(C4⋊C4) | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).101C2^2 | 320,614 |
(C23×D5).102C22 = D10⋊5(C4⋊C4) | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).102C2^2 | 320,616 |
(C23×D5).103C22 = C2×C42⋊D5 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).103C2^2 | 320,1144 |
(C23×D5).104C22 = C2×C4×D20 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).104C2^2 | 320,1145 |
(C23×D5).105C22 = C2×D5×C22⋊C4 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).105C2^2 | 320,1156 |
(C23×D5).106C22 = C2×Dic5⋊4D4 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).106C2^2 | 320,1157 |
(C23×D5).107C22 = C2×D10.12D4 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).107C2^2 | 320,1160 |
(C23×D5).108C22 = C2×D10⋊D4 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).108C2^2 | 320,1161 |
(C23×D5).109C22 = C2×C4⋊C4⋊7D5 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).109C2^2 | 320,1174 |
(C23×D5).110C22 = C2×D20⋊8C4 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).110C2^2 | 320,1175 |
(C23×D5).111C22 = C2×D10.13D4 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).111C2^2 | 320,1177 |
(C23×D5).112C22 = C2×C4⋊D20 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).112C2^2 | 320,1178 |
(C23×D5).113C22 = C2×D10⋊Q8 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).113C2^2 | 320,1180 |
(C23×D5).114C22 = C2×D10⋊2Q8 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).114C2^2 | 320,1181 |
(C23×D5).115C22 = D5×C42⋊C2 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).115C2^2 | 320,1192 |
(C23×D5).116C22 = C42⋊8D10 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).116C2^2 | 320,1196 |
(C23×D5).117C22 = C4×D4×D5 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).117C2^2 | 320,1216 |
(C23×D5).118C22 = C42⋊12D10 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).118C2^2 | 320,1219 |
(C23×D5).119C22 = C4⋊C4⋊21D10 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).119C2^2 | 320,1278 |
(C23×D5).120C22 = D5×C22⋊Q8 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).120C2^2 | 320,1298 |
(C23×D5).121C22 = C4⋊C4⋊26D10 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).121C2^2 | 320,1299 |
(C23×D5).122C22 = C4⋊C4⋊28D10 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).122C2^2 | 320,1328 |
(C23×D5).123C22 = C22×D10⋊C4 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).123C2^2 | 320,1459 |
(C23×D5).124C22 = C2×C4×C5⋊D4 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).124C2^2 | 320,1460 |
(C23×D5).125C22 = C2×C20⋊2D4 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).125C2^2 | 320,1472 |
(C23×D5).126C22 = C2×D10⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).126C2^2 | 320,1485 |
(C23×D5).127C22 = (C2×C20)⋊15D4 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).127C2^2 | 320,1500 |
(C23×D5).128C22 = C22×C4○D20 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).128C2^2 | 320,1611 |
(C23×D5).129C22 = C22×D4⋊2D5 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).129C2^2 | 320,1613 |
(C23×D5).130C22 = C22×Q8⋊2D5 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 160 | | (C2^3xD5).130C2^2 | 320,1616 |
(C23×D5).131C22 = C2×D5×C4○D4 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).131C2^2 | 320,1618 |
(C23×D5).132C22 = C2×D10.3Q8 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).132C2^2 | 320,1100 |
(C23×D5).133C22 = C4×C22⋊F5 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).133C2^2 | 320,1101 |
(C23×D5).134C22 = (C22×C4)⋊7F5 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).134C2^2 | 320,1102 |
(C23×D5).135C22 = D10⋊6(C4⋊C4) | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).135C2^2 | 320,1103 |
(C23×D5).136C22 = C24⋊4F5 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 40 | | (C2^3xD5).136C2^2 | 320,1138 |
(C23×D5).137C22 = C22×C4×F5 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).137C2^2 | 320,1590 |
(C23×D5).138C22 = C22×C4⋊F5 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).138C2^2 | 320,1591 |
(C23×D5).139C22 = C2×D10.C23 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).139C2^2 | 320,1592 |
(C23×D5).140C22 = C22×C22⋊F5 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).140C2^2 | 320,1607 |
(C23×D5).141C22 = C24×F5 | φ: C22/C2 → C2 ⊆ Out C23×D5 | 80 | | (C2^3xD5).141C2^2 | 320,1638 |
(C23×D5).142C22 = D5×C2.C42 | φ: trivial image | 160 | | (C2^3xD5).142C2^2 | 320,290 |
(C23×D5).143C22 = D5×C2×C42 | φ: trivial image | 160 | | (C2^3xD5).143C2^2 | 320,1143 |
(C23×D5).144C22 = C2×D5×C4⋊C4 | φ: trivial image | 160 | | (C2^3xD5).144C2^2 | 320,1173 |
(C23×D5).145C22 = D5×C23×C4 | φ: trivial image | 160 | | (C2^3xD5).145C2^2 | 320,1609 |
(C23×D5).146C22 = C22×Q8×D5 | φ: trivial image | 160 | | (C2^3xD5).146C2^2 | 320,1615 |